Мы за умных детей!


10 класс

Информатика 10 класс Урок 8




   Изучение предмета Информатика 10 класс 

Информатика 10 класс Урок 8 - Представление чисел в позиционных системах счисления. мы узнаем: • о цифрах, с которыми мы постоянно работаем на уроках математики, и о цифрах, с которыми работает компьютер; • что такое позиционные системы счисления; • что такое основание, базис, алфавит позиционной системы счисления; мы научимся: • «быстрому» переводу чисел между двоичной, восьмеричной и шестнадцатеричной системами счисления; Мы сможем: • переводить целые числа и конечные десятичные дроби в систему счисления с основанием q. Система счисления — это способ записи чисел. Система счисления называется позиционной, если количественный эквивалент цифры зависит от её положения в записи числа. Существует бесконечно много позиционных систем счисления. Каждая из них определяется целым числом q больше 1, называемым основанием системы счисления. Для записи чисел в позиционной системе счисления с основанием q нужен алфавит из q цифр: 0, 1, 2, …, q – 1. Представление числа в виде конечной суммы степеней числа q (суммы разрядных слагаемых) называется развёрнутой формой записи числа в системе счисления с основанием q. Для перевода числа Aq в десятичную систему счисления достаточно: Записать развёрнутую форму числа Aq. Представить все числа, фигурирующие в развёрнутой форме, в десятичной системе счисления. Вычислить значение полученного выражения по правилам десятичной арифметики. В компьютерных науках широко используются двоичная, восьмеричная и шестнадцатеричная системы счисления, поэтому их называют «компьютерными». Между основаниями этих систем существует очевидная связь: 16 = 24, 8 = 23. Если основание системы счисления q кратно степени двойки (q = 2n), то любое число в этой системе счисления можно «быстро» перевести в двоичную систему счисления, выписав последовательно двоичные коды каждой из цифр, образующих исходное число. Замена восьмеричных цифр двоичными тройками (триадами) и шестнадцатеричных цифр двоичными четвёрками (тетрадами) позволяет осуществлять быстрый перевод между этими системами счисления, не прибегая к арифметическим операциям.
написать нам